基本情報技術者平成31年春期 午前問3

問3

P,Q,Rはいずれも命題である。命題Pの真理値は真であり,命題 (not P) or Q 及び命題 (not Q) or R のいずれの真理値も真であることが分かっている。Q,Rの真理値はどれか。ここで,X or Y は X と Y の論理和,not X は X の否定を表す。
  • 03.png/image-size:235×146

            
  • [出題歴]
  • 基本情報技術者 H19秋期 問9

分類

テクノロジ系 » 基礎理論 » 離散数学

正解

解説

命題Pが真とわかってるので、まずPが含まれている「(not P) or Q=真」について考えます。

Pが真なので「not P=偽」になります。よって、この命題は「偽 or Q=真」と書き換えることができます。論理和演算(or演算)の特徴を考えると「偽 or Q=真」を満たすためにはQが真でなければならないので、命題Qは真ということがわかります。

次に「(not Q) or R=真」について考えます。Qが真なので「not Q=偽」になり、この命題は「偽 or R=真」と書き換えることができます。先程と同様に論理和演算の特徴から、この命題を満たすためには命題Rは真でなくてはなりません。

これらをまとめるとQ,Rはいずれも真ということになるので、正しい組合せは「エ」です。
© 2010- 基本情報技術者試験ドットコム All Rights Reserved.

Pagetop