平成23年特別試験午前問題 問1

論理式 (A+B)・(A+C) と等しいものはどれか。ここで,・は論理積,+は論理和,XはXの否定を表す。

  • A・BA・C
  • A・B+A・C
  • (A+B)・(A+C)
  • (A+B)・(A+C)
正解 問題へ
分野:テクノロジ系
中分類:基礎理論
小分類:離散数学
最短で答えを導く方法は論理式にド・モルガンの法則を適用して変形することです。
ド・モルガンの法則
A+BAB
A・BAB
この場合の解法は以下のようになります。

 (A+B)・(A+C)
(A+B)(A+C)
=A・BA・C

この変形により問題文の論理式は「A・B+A・C」と等しいことがわかります。

また地道にベン図を描いて比較していく方法でも解いてみます。

最初に(A+B)・(A+C)の表す集合をベン図で描いてみます。
(A+B)・(A+C)は以下のようになります。
01_2.gif
さらに設問の論理式は上図で求めた集合の補集合であるので、
01_3.gif
となります。

さらに各選択肢の論理式についてもベン図を描いてみます。
  • A・B+A・C
    01a.gif
  • A・B+A・C
    01i.gif
  • (A+B)・(A+C)
    01u.gif
  • (A+B)・(A+C)
    01e.gif
これらのベン図を問題文の論理式が表すベン図と比較すると、やはり「ア」の論理式と等価であることがわかります。

この問題の出題歴


Pagetop